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In previous work the author has presented a methodology for obtaining closed form
equations of motion for general non-holonomic hybrid parameter multiple body systems
(HPMBS). It is well known that generating closed form symbolic equations of motion for
HPMBS of few degrees of freedom rapidly degenerates to an algebraic soup unless
computer tools are utilized. Methods dependent on Lagrange multipliers are virtually
unable to provide the constraint free (minimal) symbolic equations for systems of moderate
to high order due to the complication of eliminating the multipliers. In this paper, the intent
is to provide the details, and example use of, a tool, based on commercial symbolic
manipulation software, developed to assist the symbolic processing of the equations of
motion as previously minimally formulated. The tool presented herein is novel in the way
the vector notation of the formulation scheme is retained and the way that frame
information is carried in the calculations. The symbolic tool provided in this paper allows
the modelling methodology to be a practical tool for generating closed form equations of
motion for extremely complicated HPMBS.

7 1997 Academic Press Limited

1. INTRODUCTION

The use of computer-based symbol manipulators in the derivation of equations of motion
for multiple body systems has been in use for about two decades [1–3]. Work is ongoing
and includes modelling and analysis applications [4–9] and control design applications
[10–14]. Investigators use general purpose symbol manipulation software [15, 16] and
application specific software [1–3, 15]. The advantages of using symbolic manipulation
tools are apparent during the analysis of multiple body systems. These tools allow one to
easily take advantage of the repetitive nature of multi-body dynamic modelling.

When the symbol manipulating tools are applied to flexible multi-body systems, a
modelling finesse not readily available from brute force finite element discretization
procedures is possible. This allows one to reduce the repetitive calculations associated to
multi-body systems to memory look-up operations. Of course, by replacing multiplications
by memory operations, the parallel structure of the matrix methods is often destroyed, thus
precluding the efficient use of multi-processor computers for the simulation stage. Certain
aspects of the above-mentioned problems are being addressed [14, 17–19].

The author of this work has been working in the area of hybrid parameter multiple body
system (HPMBS) analysis. A method suitable for full motion regime non-holonomic
motion analysis of HPMBS has been presented [20–22]. The tool is not restricted by
topological, continuum or kinematic considerations. In this previous work, claims to the
affability of the HPMBS modelling tool to symbolic manipulation and ultimately
automation have been made. In this paper, the claims are addressed and work towards

0022–460X/97/500823+17 $25.00/0/sv971204 7 1997 Academic Press Limited



. . 824

T 1

Typical unit vectors

In[195]: =
i = unitVector[N,‘‘i’’,1]
n[1] = unitVector[N,n,1]
b[1] = unitVector[B,b,1]

Out[195] =
ˆ
i

the automation of the HPMBS modelling method is presented. The fact of the matter
is that obtaining explicit equations of motion for HPMBS of moderate complexity is
cumbersome—for all practical purposes a computer algebra tool is needed. However, with
the tool described herein and the methodology presented elsewhere, highly complicated
systems can be model with explicit closed form equations.

Presented in this paper is a symbolic tool based on the commercial package Mathematica
[23]. The pattern recognition utilities in Mathematica have been adjusted to allow a natural
codification of the HPMBS modelling tool using vector/dyad notation, along with the
spatial and temporal variables in a HPMBS. In this paper the associated partial differential
equations are presented in weak form for numerical solution. The novelty of the described
tool is due to the way in which the vector notation of the formulation scheme is retained
and the way that co-ordinate frame information is carried in the calculations.

To demonstrate the tools, a double link flexible planar manipulator will be modelled
and the response from a simple maneuver will be presented. A Mathematica notebook is
used for equation generation and simulation result presentation. The simulation is done
via a simple FORTRAN based code external to the notebook.

2. SYMBOLIC ESSENTIALS

In this section, the essential ideas underlying the use of Mathematica as the engine for
the engineering vector notation based symbolic algorithms are presented. This package is
well suited for the task of using vector notation because of the generality of its symbol
matching algorithms. Mathematica allows the user to define symbols and operations
through its symbol/function/head fundamental basis, and the ‘‘underscore matches
anything’’ functionality.

T 2

Typical unit dyads

In[198]: =
bn1[1,1] = unitDyad[b[1],n[1]]

Out[198] =
g g

b n
1 1
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T 3

Typical vector operations

In[241]: =
bn1[1,1] >< b[1]
b[1] >< n[1]
(b[1] >< n[1]) . b[2]

Out[241] =
g g g

b n >< b
1 1 1

Out[242] =
g g

b >< n
1 1

Out[243] =
g g

−1 b . n
3 1

2.1.    

The fundamental symbol for vector notation is the unit vector. To define a unit vector
any symbol can be defined to have a head of unitVector. The author usually uses symbols
such as i
 or n̂1 or b
 1 to represent unit vectors. In the symbolic algorithms this is defined
as shown in the input/output (i/o) pair shown in Table 1. As seen in the table, the vector’s
frame is the first argument, its symbol is the second argument, and its direction is the third
argument to unitVector, respectively. The output of n[1] and b[1] is suppressed for
brevity. In order to get the unit vector output as shown, the output functions of
Mathematica were adjusted.

The next symbol that is defined is the unit dyad. The unit dyad is a symbol with head
unitDyad which has two unit vectors as arguments. An example is shown in Table 2.

The vector operations ‘‘Dot’’ and ‘‘Cross’’ are required. Mathematica has these
functions defined in one of its packages related to tensor/matrix notation. These functions
were modified to accept symbols with heads unitVector and unitDyad, with provisions to
handle the base frame for each unit vector and the operator order. The symbol for the
vector cross product is constructed from > and < as ><. This allows easy typing of
operations. In order to get the Mathematica parser to intercept this symbol and infix the
function Cross, the built in $PreRead function was used. The symbol for dot multiplication
remained the period. The functions Dot and Cross allow operations such as that shown

T 4

Typical angular velocity

In[249]: =

NwB = omega[N,B] = s1 n[1] + s2 n[2] + s3 n[3]

Out[249] =
g g g

s1 n + s2 n + s3 n
1 2 3
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T 5

Typical position vector

In[250]: =

NorP = L1 n[1] + L2 n[2] + L3 n[3] + x1 b[1] + y1 b[2] + z1 b[3]

Out[250] =
g g g g g g

x1 b + y1 b + z1 b + L1 n + L2 n L3 n
1 2 3 1 2 3

in Table 3. In the table, the vector b[2] is the two-vector and b[3] is the three-vector
in the frame B.

Once these fundamental operations were defined, any vector could be constructed. To
allow the operations Dot and Cross to distribute across these arbitrary vectors, many
pattern matching scenarios were defined. Other functions that loosen the nesting of
parenthesis, etc., also had to be defined.

2.2. ,    

In general, vectors are defined in multiple rotating co-ordinate frames, so time
differentiation of the vector quantities is facilitated via the use of frame angular velocity.
The angular velocity of a frame is a symbol with head omega, which has two arguments,
a base frame (which can rotate) symbol and the rotating frame symbol. An example of
an angular velocity i/o pair is shown in Table 4. With angular velocity defined, this allows
a vector from point No to point P, shown in Table 5, to be differentiated to velocity as
shown in Table 6. The operator DvDt[a,b] takes the differentiation frame and the vector
as arguments. Implicit in the differentiation operator is that the angular velocity of the
frame of reference, for each unit vector in the vector differentiated, is known relative to the
differentiation frame. Multiple use of the DvDt[a,b] operator and operators defined to

T 6

Typical velocity vector

In[251]: =
NovP = DvDt[N,NorP]

Out[251] =
g g g g g g

x1 (s1 n >< b + s2 n >< b + s3 n >< b) +

1 1 2 1 3 1
g g g g g g

y1 (s1 n >< b + s2 n >< b + s3 n >< b) +

1 2 2 2 3 2
g g g g g g

z1 (s1 n >< b + s2 n >< b + s3 n >< b) +

1 3 2 3 3 3
g g g g g g

ẋ1 b + ẏ 1 b + ż 1 b + L̇ 1 n + L̇ 2 n + L̇ 3 n

1 2 3 1 2 3
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Figure 1. A two-link flexible manipulator.

spread out the symbols (some intrinsic others created) allow the kinematic analysis to be
executed.

In some instances, special integration operations had to be defined to assist in the
integration of complicated expressions, but in general, the intrinsic integration function
worked well, provided that the expression was sufficiently simple, which is a vague
statement, but does describe the situation.

Other functions were defined to ‘‘loosen dots’’, ‘‘distribute scalars’’, ‘‘un-square’’,
‘‘gather divisors’’, ‘‘symplify right-hand sides’’, etc. These functions and their brethren
were used to get the symbols into a suitable form. The equations of motion are derived
by implementing the modelling algorithm, previously mentioned, with these symbolic
tools. This is demonstrated below.

T 7

Angular velocity and acceleration

In[211]: =

NwB[1] = omega[N,B[1]] = s[1][t] b[1,3]
NwB[2] = omega[N,B[2]] = (s[1][t] + sp[2][t] + s[4][t])b[2,3]

NaB[1] = DvDt[N,NwB[1]]//Simplify
NaB[2] = DvDt[N,NwB[2]]//Simplify

Out[212] =
g

(s [t] + s [t] + sp [t]) b

1 4 2 23

Out[214] =
g

(ṡ [t] + s ˙ [t] + s ˙p [t]) b

1 4 2 23
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2.3.     

The advantages of using engineering vector notation are manifold. The first advantage
is that the notation is second nature for engineers and is readily related to the geometry
of the problem at hand. The second advantage is that co-ordinate transformations are not
needed until all the manipulations are completed. Also, the transformations have been
reduced to minimal operations between the respective vectors via vector identities where
applicable. The third advantage is that the terms of the equations are easily identified with
respect to normal naming conventions, such as a Coriolis term, and the direction in which
they act is apparent. The fourth advantage is that recursive algebraic operations and
repetitive operations can be readily identified and replaced with memory operations. The
fifth advantage is that non-holonomic equations of motion for HPMBS are rigorously and
simply implemented with the vector-based method utilized herein.

Take as a well known counter-example the usual method for implementing the vector
cross product in the matrix based formulation schemes. A 3×3 skew-symmetric angular
velocity matrix is multiplied into a 3×1 vector of position or velocity components. In
order for the multiplication to be defined, the vectors must be transformed into a common
co-ordinate basis, which may require the additional multiplication of the vectors by 3×3
transformation matrices. In the case of the transformation and angular velocity cross
product operator matrices, there are chances for many zero elements to exist. If the matrix
multiplication algorithm is not sufficiently frugal, many unneeded operations will be
performed. In any case, the co-ordinate transformation multiplications will be applied. It
also appears that identifying recurring operations, operands and results will be difficult,
if not impossible. The vector method lends a clear advantage in this situation because the
transformations are completed via vector operations which are exact (in the symbolic
implementation) and the co-ordinate frame information is imbedded, which allows for the
clear delineation of recurring and unneeded operations. However, the parallel nature of
the matrix methods is lost.

As another counter-example, consider a scalar-based Lagrangian formulation of a
problem with flexible bodies and multiple rotating reference frames. In this case it is usually
decided to carry the transcendental terms of the transformations form the outset. In many
cases the identities and reductions that are readily identified in the vector notation go
unnoticed, because they are so deeply imbedded in the terms of the equations. The
computer-based symbolic tools often miss the reductions because they are so deep in the
expressions and the time allocated for simplifications is usually not extensive. Therefore,
many terms that are identically zero or constant are calculated at each time step in a
simulation. The vector-based method keeps the transformations distinctly identifiable,
which allows for greater simplification, resulting in fewer operations per execution step.

Other advantages become apparent as experience with the modelling technique evolves.
These advantages will be highlighted as the example presented below unfolds.

3. FLEXIBLE TWO-LINK PLANAR MANIPULATOR

In this section a flexible two-link planar manipulator will be modelled and a simulated
maneuver presented. The system is a simplified version of reality and is presented only as
a demonstration of the tools herein. The links are taken to be Euler–Bernoulli beams and
it is assumed that modelling deflection is sufficient. The low angular speeds expected are
not of sufficient magnitude to expect instabilities due to the lack of geometric stiffness
terms in the models for the beams. The links are assumed to be driven by massless motors
and are connected via massless hubs. Proportional damping is present in the joints and
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T 8

Position vectors

In[215]: =

NorBo[1] = 0
BorIo[1] = x[1,1] b[1,1] + u[1,2)[x[1,1], t] b[1,2]
BorBo[1,2] = L[1] b[1,1] + qp[3][t] b[1,2]
BorIo[2] = x[2,1] b[2,1] + u[2,2][x[2,1], t] b[2,2]

structural damping proportional to the bending rate of change is assumed to be present
in both beams.

The typeset equations will be supplemented with the corresponding input and output
(where appropriate) from the symbolic algorithms as the model is developed. A discussion
of tools used, but not mentioned in the previous section, will be provided in the body of
the model development.

3.1.  

The system is shown in Figure 1. The domain of each beam is one-dimensional, the
independent co-ordinates being x11 and x21 measured from the root of beam B1 and B2,
respectively, along the undeformed neutral axis of each beam. The ‘‘special’’ point of beam
B1 is labelled bo1 and bo2 for beam B2. The co-ordinate frames, denoted by B1 and B2, are
attached as shown in Figure 1. At the root of each beam there is a massless hub to which
torques Ta1 and Ta2 are applied to the hubs of B1 and B2. The angular positions of frames
B1 and B2 are q1 and q4. Beam deflection is measured with ũ12 (x11, t)b
 12 and ũ22 (x21, t)b
 22

(simple flexure) as shown in Figure 1. The beams have mass per unit length r, total lengths
are L1 and L2, cross-sectional area A, area moment of inertia I, and Young’s modulus E.
Structural damping is assumed to be present in proportion to the rate of bending for each
beam. The details of the formulas used below can be found in the work mentioned above.

3.2. 

The first vectors needed are the angular velocities of frame B1 and B2. They are

Nv� B1 = s1 b
 13 (1)

and

Nv� B2 = (s1 + s'2 + s4)b
 13. (2)

The angular accelerations of frames B1 and B2 are

Na� B1 = ṡ1 b
 13 (3)

and

Na� B2 = (ṡ1 + ṡ'2 + ṡ4)b
 13. (4)

The generalized and pseudo-generalized speeds are defined as

s1 = q̇1, s'2 = q̇'2 =
12ũ12 (L1, t)

1x11 1t
, s4 = q̇4, (5)

where q'2 = 1ũ12 (L1, t)/1x11. The corresponding computer input and output is shown in
Table 7. In the table, the complete output is not shown, but can be inferred from the
information provided.
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T 9

Derivatives of position vectors

In[220]: =

NovBo[1] = DvDt[N,NorBo[1]]
BovIo[1] = DvDt[N,BorIo[1]]//gatherVectors
BovBo[1,2] = DvDt[N,BorBo[1, 2]]/ . qp[3]’[t] -> sp[3][t]//
distributeScalars//gatherVectors
BovIo[2] = DvDt[N,BorIo[2]]//distributeScalars//gatherVectors

Out[223] =

( −(s [t] u [x,t]) − s[t] u [x,t] −
1 22 21 4 22 21

g

sp [t] u[x,t]) b +

2 22 21 21
g

(x s [t] + x s [t] + x sp [t] + u ˙ [x, t]) b

21 1 21 4 21 2 22 21 22

The position vectors of interest are

or� bo1 =0, bo1r� Io1 = x11 b
 11 + ũ12 b
 12, bo1r� bo2 =L1 b
 11 + q'3 b
 12,

bo2r� Io2 = x21 b
 21 + ũ22 b
 22, (6)

where bo1r� Io1 and bo2r� Io2 are vectors to the differential mass of each beam. The separation of
the overall position vectors, shown above, is provided to take advantage of recurring
quantities as these vectors and their derivatives are used in the analysis. The corresponding
computer generated symbols are shown in Table 8. Output has been suppressed.

The absolute velocities of the points bo1 and bo2 are required for partial velocity
calculations and for acceleration calculations. Therefore,

o
Nv� bo1 =0, o

Nv� bo2 =−s1 q'3 b
 11 + (s'3 + s1 L1)b
 12, (7)

where q'3 = ũ12 (L1, t) and s'3 = q̇'3 = 1ũ12 (L1, t)/1t. The corresponding computer i/o is
shown in Table 9. In the table, only the output from the last input is shown.

The absolute accelerations of the differential beam elements can be written as

o
Na� Io1 =−02s1

1ũ12

1t
+ ṡ1 ũ12 + x11 s2

11b
 11 +012ũ12

1t2 + x11 ṡ1 − ũ12 s2
11b
 12,

T 10

Derivatives of velocity vectors

In[224]: =
NoxBo[1] = DvDt[N,NovBo[1]]//distributeScalars//gatherVectors
BoxIo[1] = DvDt[N,BovIo[1]]//distributeScalars//gatherVectors
BoxBo[1,2] = DvDt[N,BovBo[1,2]]/ . qp[3]’[t] -> sp[3][t]//
distributeScalars//gatherVectors
BoxIo[2] = DvDt[N,BovIo[2]]//distributeScalars//gatherVectors
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T 11

Utilizing recurrence

In[228] =

z[1] = Coefficient[BoxBo[1,2], b[1,1]]/ . Derivative[ - ][ - ][ - ]->0;
z[2] = Coefficient[BoxBo[1,2], b[1,2]]/ . Derivative[ - ][ - ][ - }->0;
BoxBo[1,2] = BoxBo[1,2]/ . {z[1] :Z[1],z[2] :Z[2]}

Out[230] =
g

(Z − qp [t] s ˙ [t]] b +

1 3 1 11
g

(Z + L ṡ [t] + s ˙p [t]) b

2 1 1 3 12

o
Na� Io2 =−(2s1 s'3 + ṡ1 q'3 +L1 s2

1)b
 11 + (ṡ'3 +L1 ṡ1 − q'3 s2
1)b
 12

−02(s1 + s'2 + s4)
1ũ22

1t
+(ṡ1 + ṡ'2 + ṡ4)ũ22 + x21 (s1 + s'2 + s4)21b
 21

+012ũ22

1t2 + x21 (ṡ1 + ṡ'2 + ṡ4)− ũ22 (s1 + s'2 + s4)21b
 22. (8)

The symbolic inputs for the acceleration terms are shown in Table 10. In the table, the
output has been suppressed for brevity.

Recurrence occurs and is utilized by introducing intermediate variables such as shown
in Table 11. In the table, the upper-case Z’s hold the place of the lower case z ’s which
are used during the simulation stage.

3.3.     

The strain energy density functions for the beams are (assuming simple flexure)

V�1 = 1
2 E1 I1 012ũ12

1x2
111

2

, V�2 = 1
2 E2 I2 012ũ22

1x2
211

2

. (9)

The corresponding computer symbolic input, including the weak form of the strain energy,
takes the form shown in Table 12, where only the terms for the first beam are shown.

The deflection field is assumed to be of the form

ũ(x, t)=f1 (t)x2/L4 +f2 (t)x3/L4 +f3 (t)x4/L4, (10)

T 12

Strain energy density

In[231]:
Vbar[1] = 1/2 Ey[1] Ii[1] (D[u[1,2][x[1,1],t], {x[1,1],2}]) g2
dVbarUxx[1] = D[Vbar[1], D[u[1,2][x[1,1],t], {x[1,1],2}]]
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Forces and torques

In[236]: =

Ib[1] = Integrate[rho[1] NoxBo[1], {x[1,1],0,L[1]}]
+ Integrate[rho[1] BoxIo[1],{x[1,1],0,L[1]}]//.
{Dt[phi[i ––][t],t] -> Dtphi[i][t],
Dt[phi[i ––][t],{t,2}] -> Dt[Dtphi[i][t], t]}//
distributeScalars//gatherVectors

In[240]: =

Fb[1] = Integrate[ −rho[1] g n[2],{x[1,1],0,L[1] }]

In[243]: =

Jb[1] = Integrate[rho[1] BorIo[1] >< NoxBo[1],{x[1,1],0,L[1]}] +
Integrate[rho[1] BorIo[1] >< BoxIo[1],{x[1,1],0,L[1]}]//.
{Dt[phi[i ––][t],t] -> Dtphi[i][t],
Dt[phi[i ––][t],{t,2}] -> Dt[Dtphi[i][t],t]}//
distributeScalars//gatherVectors

In[246]: =

Tb[1] = Integrate[BorIo[1] >< ( −rho[1] g n[2]),{x[1,1],0,L[1]}] +
(Ta[1] − Ta[2]) b[1,3]//gatherVectors

similar for each beam for use in the weak formulation. It is noted that this assumed field
may not be judicious for rigorous models; however, it is demonstrative of the tools
described herein.

3.4.   

The ordinary differential equations governing the angular speeds are obtained from

0=
1o

Nv� bo1

1s1
[F� B1 − I� B1]+

1Nv� B1

1s1
[T� B1 − J� B1]+

1o
Nv� bo2

1s1
[F� B2 − I� B2]+

1Nv� B2

1s1
[T� B2 − J� B2]

(11)

for s1, and

0=
1o

Nv� bo1

1s4
[F� B1 − I� B1]+

1Nv� B1

1s4
[T� B1 − J� B1]+

1o
Nv� bo2

1s4
[F� B2 − I� B2]+

1Nv� B2

1s4
[T� B2 − J� B2]

(12)

for s4. The forces and torques (applied and inertia) are defined in symbolic form as shown
in Table 13. The derivative transformations are executed to maintain a first order form
for the equations of motion. Kinematic differential equations will be added.

T 14

Recurrence again

In[260]: =

z[14] = Coefficient[Jb[2],b[2,1]><b[1,1]]/ . Derivative[1][ –][ –] ->0;
Jb[2] = Jb[2]/ . {z[14] -> Z[14]}
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T 15

Ordinary equation of motion

In[270]: =

eom[1] = Pvel[NovBo[1],s[1][t]] . (Fb[1] − Ib[1]) +
Pvel[NwB[1],s[1][t]] . (Tb[1] − Jb[1]) +
Pvel[(NovBo[1] + BovBo[1,2]),s[1][t]] . (Fb[2] − Ib[2]) +
Pvel[NwB[2],s[1][t]] . (Tb[2] − Jb[2])// . {Dt[sp[2][t],t] ->
Dt[Dt[u(1,2][x[1,1],t],x[1,1]],{t,2}],Dt[sp[3][t],t] ->
Dt[u[1,2][x[1,1],t],{t,2}],x[1,1] -> L[1],
Dt[phi[i ––][t],{t,2}] -> Dt[Dtphi[i][t],t]}//gatherDots

As before, recurrence can be typically utilized by writing intermediate variables; for
another example, see Table 14.

The equations of motion for the regular generalized speeds s1 and s4 are written in
computer form (mimicking equations (11) and (12)) as shown in Table 15. The operator
Pvel[ –, –] is used for partial differentiation. A similar formula for eom[2] except with
s[1] [t] replaced by s[4] [t] is also utilized.

The transformation of vector products is performed via expressions as shown in
Table 16, where co[1] [t] and co[2, 4] imply cos q1 and cos (q2 + q4), respectively.
The other transformation terms are similarly defined.

3.5.  

The formula for the field equation governing deflection of B1 is

0=
1

1x11 0 1V�1

1ũ12,11−
12

1x2
11 0 1V�1

1ũ12,111− ro
Na� Io1 · b
 12. (13)

The structural damping term is not shown explicitly, but will be added later. The boundary
conditions are given as

1V�1

1ũ12,1
−

1

1x11 0 1V�1

1ũ12,111= g'12,
1V�1

1ũ12,11
= k'12 (14, 15)

at x11 =L1, and

ũ12 = ũ12,1 =0 (16)

T 16

Basic transformation

In[271]: =
eom[1] = eom[1] // . {b[1,1] . n[1] -> co[1][t],
b[2, 2] . n[2] -> co[1, 2, 4][t]}
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Weak field equation

In[292]: =

intterm[1][psi –]: = −rho[1]gb[1,2] . n[2]psi −
rho[1] b[1,2] . (NoxBo[1] + BoxIo[1])psi −
dVbarUxx[1] D[psi,{x[1,1],2}] +
2gam[1]D[D[u[1,2][x[1,1,t],{x[1,1],2}],t]psi

In[293]: =

bndry[1][spd –,psi –]: = (Pvel[NovBo[1],spd] . (Fb[1] − Ib[1]) +
Pvel[NwB[1],spd] . (Tb[1] − Jb[1]) +
Pvel[(NovBo[1] + BovBo[1,2]),spd] . (Fb[2] − Ib[2]) +
Pvel[NwB[2],spd] . (Tb[2] − Jb[2]))psi

In[294]: =

eom[3] = Integrate[intterm[1][x[1,1] g2/L[1] g4],{x[1,1],0,L[1]}] +
bndry[1][sp[2][t],Dt[x[1,1] g2/L[1] g4,x[1,1]]] +
bndry[1][sp[3][t],x[1,1] g2/L[1] g4]// .
{Dt[sp[2][t],t] -> Dt[Dt[u[1,2][x[1,1],t],x[1,1]],{t,2}],
Dt[sp[3][t], t] -> Dt[u[1,2][x[1,1],t],{t,2}],x[1,1] -> L[1],
Dt[phi[i ––][t],t] -> Dtphi[i][t],
Dt[phi[i ––] [t],{t,2}] -> Dt[Dtphi[i][t],t]}//gatherDots

at x11 =0. The terms on the right sides of the boundary conditions are defined as

g'12 =
1o

Nv� bo1

1s'3
[F� B1 − I� B1]+

1Nv� B1

1s'3
[T� B1 − J� B1]+

1o
Nv� bo2

1s'3
[F� B2 − I� B2]+

1Nv� B2

1s'3
[T� B2 − J� B2]

T 18

I-Matrix element

In[272]: =

iM[1,1] = −D[eom[1],Dt[s[1][t],t]]//Simplify//
gatherScalars//miniDivisions

Out[272] =

2
rho (co [t] (L L +

2 24 1 2
(L (20 phi [t] + 15 phi [t] + 12 phi [t])

2 221 222 223
�terms now shown �
(264600 (rho (L + L phi [t] phi [t]) +

1 1 1 121 122
�terms now shown �
8820 L rho (20 phi [t] + 15 phi [t] +

2 2 221 222

12 phi [t]) si [t])) / 793800

223 24
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Generating the right side

In[280]: =
rhs[1] = eom[1]// . Derivative[1][ –][ –] ->0//
Simplify//gatherScalars//minDivisions

and

k'12 =
1o

Nv� bo1

1s'2
[F� B1 − I� B1]+

1Nv� B1

1s'2
[T� B1 − J� B1]+

1o
Nv� bo2

1s'2
[F� B2 − I� B2]+

1Nv� B2

1s'2
[T� B2 − J� B2].

The formula for the field equation for B2 is

0=
1

1x21 0 1V�2

1ũ22,11−
12

1x2
21 0 1V�2

1ũ22,111− ro
Na� Io2b
 22 ; (17)

damping will be added later. The boundary conditions are

1V�2

1ũ22,1
−

1

1x11 0 1V�2

1ũ22,111=0,
1V�2

1ũ22,11
=0 (18, 19)

at x21 =L2, and

ũ22 = ũ22,1 =0 (20)

at x21 =0.
The integral weak form of the field equations can be generated for each assumed shape

function via Mathematica as shown in Table 17, where psi is the shape function. The
equation for the first beam, first shape function (x2), is given as eom[3] . These formulas
can be exercised for each mode shape. For the second beam we have similar formulas but
the boundary term is zero. The term containing gam[1] is the structural damping term,
where gam[1] is the damping factor.

3.6. 

The simulation was expedited by arranging the equations of motion in the form

&I11
···
I81

· · ·
· · ·
· · ·

I18
···
I88 '8 ṡ1

···
Dtf� 223 9= 8f1

···
f8 9, (21)

Figure 2. Co-ordinate q1 versus time.
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Figure 3. Co-ordinate q4 versus time.

with kinematic differential equations of the form

q̇1 = s1,

··· (22)

f� 223 =Dtf223.

The I matrix is formed via commands such as are shown in Table 18, where only the
I11 term is shown. The large integers are the result of simplifying the factors and divisors.

The right sides can be found via commands demonstrated in Table 19 and will include
the intermediate Z variables.

Operations similar to those shown in Tables 18 and 19 can be exercised for each discrete
and field variable.

The equations of motion were output to a file using the intrinsic FortranForm in
Mathematica. The explicit function of the time notation and the indices of the symbols
were changed appropriately for FORTRAN coding; another function was devised for this
purpose.

A Gear multi-step integrator was utilized for the simulation. The applied torques were
assumed to be of the form

Ta1 =−D1 s1 −K1 (q1 −Q1), Ta2 =−D2 s4 −K1 (q4 −Q4),

where the D’s are simple damping terms and the K’s are proportional gains; the
commanded angles are the Q’s. This control law is simplistic and used only to obtain a
maneuver profile to complete the example.

Figure 4. The beam B1 tip deflection.
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Figure 5. The beam B2 tip deflection.

For the simulation, the beams were 3 ft (10·9 m) long each with a cross-section of 2 in
(15 cm) by 3

4 in (12 cm). The material properties of aluminum were used with the mass
density per unit length. The initial conditions for the angles were q1 (0)=−0·5 rad and
q4 (0)=0·5 rad; all other initial conditions were zero. The commanded angles were
Q1 =0·5 rad and Q4 =0 rad. The torque constants were D1 =15, D2 =10 ft-lb-s
(113·6 N m s) and K1 =40, K2 =30 ft-lb (140·7 N m). The structural damping was taken
as g=0·1 lb s (10·5 N s) for both beams. The simulation was allowed to run for 40 s.

The response of the base angle is given in Figure 2. The response of the second angle
is given in Figure 3. The tip deflection of the first beam as seen from the rotating
co-ordinate frame riding with B1 is shown in Figure 4. The deflections stayed within the
linear deflection assumption over the length of the beam. The tip deflection of the second
beam as seen from frame B2 is shown in Figure 5. As stated above, the control law is
rudimentary as can be seen from the response and time elapsed; it was provided to
demonstrate the tools, not its own merits.

4. SUMMARY AND DISCUSSION

In this paper, a set of vector algebra tools based on a commercial symbolic manipulation
package were presented. These tools were explicitly formulated to assist in the closed form
modelling of HPMBS via modelling algorithms previously developed by the author. A
demonstration of the modelling technique and computer tools was presented. The example
included the modelling and simulation of a simplified HPMBS, which was complicated to
a degree that allowed the deftness of the modelling tools to be elucidated.

It can be seen by the results herein that the method described in references [20–22] can
rigorously and systematically model complicated systems. The utility of utilizing pseudo
co-ordinates and speeds is clear by the simplicity of the way in which the technique handles
boundary conditions (see equations (14) and (15)). Creating a computer tool to directly
imitate the notation of the modelling method allows one to sit down and write the
equations of motion at the computer, mirroring the method of pencil and paper. The
vector-based computer tool also allows for the generation of lean equations of motion.
Redundant operations are relegated to memory reads. These tools will be used as a basis
for fully automated closed form non-holonomic HPMBS modelling software, as well as
in research and education. In education, not having a fully automated package is desirable
because it allows the student to do by computer what is normally done by hand, but for
systems of fair complexity; the computer input and output mimicks hand calculations. In
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research, the symbolic tool as provided is useful for an analyst that requires complete
control of the formulation.
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